
1

Classification of Mathematical Symbols
Joshua Cappelli, Isabel N. Rivera Santiago

Abstract—Realizing the difficulty in deciphering handwritten
mathematical symbols due to the variety of individual hand-
writing and the complexity of mathematical writing, this study
explores the strengths and weaknesses of different preprocessing
steps and convolutional neural networks in classifying different
sets of handwritten math notation. We employ a transfer learn-
ing approach, leveraging both Xception and MobileNetV2 pre-
trained on ImageNet. The model is fine-tuned on a dataset that
undergoes preprocessing steps such as normalization and several
augmentations to enhance the dataset and minimize overfitting.
Our results show a significant improvement in classification accu-
racy compared to other machine learning techniques, achieving
an accuracy of 88% on a small test set. The study confirms the
potential of convolutional networks on mathematical notation
recognition.

Index Terms—classification, CNN, SVM, transfer learning

I. INTRODUCTION

The challenge of interpreting different types of handwritten
mathematical notation can be difficult due to the various
factors that can play a role in affecting the strength of a
model. This study focuses on exploring the efficacy of dif-
ferent preprocessing methods and convolution neural network
(CNN) architecture to classify the different sets of handwritten
mathematical symbols. Using various transfer learning pre-
trained models, namely MobileNetV2, and Xception along
with fine-tuning different preprocessing aspects we aim to
enhance the ability to classify and recognize mathematical
notation accurately [2][5]. Preprocessing steps include nor-
malization and augmentation techniques such as rotations and
reflections to refine the dataset and mitigate overfitting while
the normalization aims to standardize the data. The primary
study of this project is to investigate the effects of different pre-
processing strategies and CNN architectures in the context of
handwritten mathematical notation recognition and to evaluate
their performance. In this paper, we present the results of the
various experiments, along with demonstrating the capabilities
of our models on the recognition of mathematical symbols.

II. IMPLEMENTATION

A. Preparation

We begin by collecting an assortment of handwritten math-
ematical symbols, namely [the variable x, square root, plus
sign, negative sign, equal, percent, partial, product, pi, and
summation], and then each symbol is labeled with its corre-
sponding name.

B. Preprocessing

Before we feed the data into the CNN models, there are
several preprocessing steps we attempt to try and enhance the
quality of uniformity of the dataset to make a more robust

model. This included normalization by standardizing each
pixel from 0 to 1 to mitigate variations in the brightness
and contrast of each image. Additionally, we did several
data augmentation techniques such as rotations by 90-degree
increments and inverting random images. This helped increase
the diversity of our dataset and improve the model against
different variations in handwriting styles. Finally, we did a 20
percent split for both our validation dataset and our test dataset
without augmentation to prevent data leakage.

C. Model Architecture

We employ transfer learning to leverage the pre-trained
convolutional neural network models on the ImageNet dataset
[7]. We specifically utilized Xception and MobileNetV2 due
to their efficiency, strength, and effectiveness in completing
the task. In our final model, we used Xception as it returned
the highest accuracy. For the base model, we used the weights
for ImageNet with an input shape of (100,100,3) and then we
froze the base model. In our layers, we used global average
pooling, a dropout rate of 0.5, and the output layer was a
dense layer with a softmax activation function. We also used
the Adam optimizer along with the sparse categorical cross
entropy (CCE) for our loss function.

The Adam optimizer is short for adaptive moment esti-
mation [6]. It is an optimization algorithm that is mainly
used for deep neural networks. It combines other averages
for each parameter. Namely, the first moment of the gradients
which corresponds to the mean, and the second moment of the
gradients which corresponds to the variance. These two are
used to compute the learning rates for the parameters. Since
they are adaptive the learning rates can be adjusted according
to the behavior of the gradients. In addition, Sparse CCE is a
loss function that attempts to minimize the difference between
the predicted probability distribution and the true probability
distribution of the classes. For tasks such as this study, which
is a multi-class classification, this type of loss function is
often used. It calculates the cross-entropy between the true
label and the predicted probabilities where the labels represent
the classes which in our case are the different mathematical
symbols.

D. Hyperparameter Tuning

We used several different strategies to try and optimize the
performance of our model. Some examples were using 32 and
64 as batch sizes along with different amounts of epochs to
ensure the optimal configuration of our model for the dataset.
Finally, we tested using different activation functions such as
‘relu’ and ‘selu’. We also used different learning rates for each
of our models to mitigate overfitting and find the best weights
for our models.

2

TABLE I
OVERVIEW OF EXPERIMENTS.

Model Test Accuracy Optimizer Loss function
Base CNN 67 % Adam SCCE

SVM + CNN 61 % CCE
MobileNetV2 85 % Adam CCE

Xception 88 % Adam SCCE

III. EXPERIMENTS

Our first convolution neural network model, in which we
only reformatted each image to 72,72 to remove some unnec-
essary features as well as reduce the computational complexity
while preserving information regarding each image. We also
normalized each image so that each grayscale pixel value was
between 0 and 1 which lowers the contrast in the image.
Furthermore, the neural network was trained using 4 layers
in the first had 64 filters and the next had 128 filters. We also
had a scheduler to lower the learning rate over time to mitigate
overfitting and used the sparse categorical cross entropy for the
loss function.

In our second model which was also a CNN, we attempted
to find the misclassified data using an support vector machine
(SVM)[1]. After normalization, we ran the SVM model and
deleted any sample that was misclassified. We then ran the
same steps as we did in the first model to build our CNN.

In our third model, we used transfer learning to train our
CNN, implementing MobileNet[2]. MobileNet is a CNN archi-
tecture that is specifically made for deployment on devices that
have limited computational power. The key difference is its use
of depthwise separable convolutions which reduce the amount
of parameters and thus the computational cost compared to
other convolution layers. We first downscaled to 96 by 96
and then for preprocessing we both normalized and rotated
randomly many of the images to create new images. We
tried several different strategies to improve the test accuracy
such as implementing a learning rate scheduler and using
categorical cross entropy rather than sparse categorical cross
entropy [3][4]. The difference between the two is that with
sparse, each integer label is seen as a separate class while
with normal categorical cross entropy is represented by one
hot encoded vector [9].

In our final model, we used transfer learning from ImageNet
to train our CNN, more specifically we implemented Xception.
Xception stands for extreme inception and it is a deep CNN
architecture that is specifically effective at feature extraction
tasks such as our image classification task. The difference
with Xception is its use of both depthwise convolution and
pointwise convolution also known as 1x1 convolution which
projects depthwise features into a new feature space. Using the
same preprocessing techniques as our previous model without
downscaling any image. We also regularized with a dropout
of 0.5 and had a learning rate of 0.0001, a beta of 0.9, and a
beta 2 of 0.999. All test set accuracy values are listed below
in Table 1.

width=0.52024-04-24 235207.jpg

IV. CONCLUSION

In this study, we investigated how different methods of
preprocessing and models can be used in the recognition of
handwritten mathematical symbols. We also addressed the
different challenges, strengths, and shortcomings of differ-
ent structures and how they can be used to better train a
model for recognition tasks. By employing and leveraging
transfer learning and different preprocessing techniques and
data augmentation we achieved notable results compared to
simpler or more traditional methods in machine learning.
Our experiments demonstrate the effectiveness of CNNs on
classification problems with an accuracy of 88 percent on our
test set. This shows the potential of deep learning techniques
for classification tasks.

Furthermore, our analysis of the different preprocessing
strategies gives strong insight into the influence they hold over
the strength of the model against various handwriting styles
and images. While our experiments hold strong results one
area of exploration for future results and improvements for this
task would be to employ CleanLab.io to better filter the train-
ing data for finding and fixing of mislabeled or misclassified
data[8]. This would help strengthen the power of the model
as misclassified data can seriously hinder the capabilities
of a model. In conclusion, our results reaffirm the strength
of convolutional neural networks in addressing classification
tasks such as handwritten mathematical symbol recognition.
By combining different machine learning concepts such as
transfer learning and CNN we have made significant and
reliable results.

ACKNOWLEDGMENT

The authors would like to thank Dr. Catia Silva and the
Teaching Assistants.

REFERENCES

[1] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt and B. Scholkopf, ”Support
vector machines,” in IEEE Intelligent Systems and their Applications, vol.
13, no. 4, pp. 18-28, July-Aug. 1998, doi: 10.1109/5254.708428.

[2] A. G. Howard et al., “MobileNets: Efficient Convolutional Neu-
ral Networks for Mobile Vision Applications,” arXiv.org, 2017.
https://arxiv.org/abs/1704.04861https://arxiv.org/abs/1704.04861

[3] A. Mao, M. Mohri, and Y. Zhong, “Cross-Entropy Loss Functions:
Theoretical Analysis and Applications,” arXiv.org, Apr. 14, 2023.
https://arxiv.org/abs/2304.07288https://arxiv.org/abs/2304.07288

[4] TensorFlow, “tf.keras.losses.SparseCategoricalCrossentropy — Ten-
sorFlow Core r2.0,” TensorFlow, 2019. https://www.tensorflow.org/
api docs/python/tf/keras/losses/SparseCategoricalCrossentropy

[5] F. Chollet, “Xception: Deep Learning with Depth-
wise Separable Convolutions,” arXiv.org, 2016.
https://arxiv.org/abs/1610.02357https://arxiv.org/abs/1610.02357

[6] D. P. Kingma and J. Ba, “Adam: A Method for
Stochastic Optimization,” arXiv.org, Dec. 22, 2014.
https://arxiv.org/abs/1412.6980https://arxiv.org/abs/1412.6980

[7] O. Russakovsky et al., “ImageNet Large Scale
Visual Recognition Challenge,” arXiv.org, 2014.
https://arxiv.org/abs/1409.0575https://arxiv.org/abs/1409.0575

[8] “Cleanlab Open-Source Documentation,” cleanlab.
https://docs.cleanlab.ai/stable/index.html (accessed Apr. 25, 2024).

[9] Z. Zhang and M. R. Sabuncu, “Generalized Cross Entropy Loss for
Training Deep Neural Networks with Noisy Labels,” arXiv:1805.07836
[cs, stat], Nov. 2018, Available: https://arxiv.org/abs/1805.07836

